4 resultados para Bees

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced eusociality sometimes is given credit for the ecological success of termites, ants, some wasps, and some bees. Comprehensive study of bees fossilized in Baltic amber has revealed an unsuspected middle Eocene (ca. 45 million years ago) diversity of eusocial bee lineages. Advanced eusociality arose once in the bees with significant post-Eocene losses in diversity, leaving today only two advanced eusocial tribes comprising less than 2% of the total bee diversity, a trend analogous to that of hominid evolution. This pattern of changing diversity contradicts notions concerning the role of eusociality for evolutionary success in insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hymenoptera attach to smooth surfaces with a flexible pad, the arolium, between the claws. Here we investigate its movement in Asian weaver ants (Oecophylla smaragdina) and honeybees (Apis mellifera).  When ants run upside down on a smooth surface, the arolium is unfolded and folded back with each step. Its extension is strictly coupled with the retraction of the claws. Experimental pull on the claw-flexor tendon revealed that the claw-flexor muscle not only retracts the claws, but also moves the arolium. The elicited arolium movement comprises (i) about a 90° rotation (extension) mediated by the interaction of the two rigid pretarsal sclerites arcus and manubrium and (ii) a lateral expansion and increase in volume. In severed legs of O. smaragdina ants, an increase in hemolymph pressure of 15 kPa was sufficient to inflate the arolium to its full size. Apart from being actively extended, an arolium in contact also can unfold passively when the leg is subject to a pull toward the body.  We propose a combined mechanical–hydraulic model for arolium movement: (i) the arolium is engaged by the action of the unguitractor, which mechanically extends the arolium; (ii) compression of the arolium gland reservoir pumps liquid into the arolium; (iii) arolia partly in contact with the surface are unfolded passively when the legs are pulled toward the body; and (iv) the arolium deflates and moves back to its default position by elastic recoil of the cuticle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal polyethism is a highly derived form of behavioral development displayed by social insects. Hormonal and genetic mechanisms regulating temporal polyethism in worker honey bees have been identified, but the evolution of these mechanisms is not well understood. We performed three experiments with male honey bees (drones) to investigate how mechanisms regulating temporal polyethism may have evolved because, relative to workers, drones display an intriguing combination of similarities and differences in behavioral development. We report that behavioral development in drones is regulated by mechanisms common to workers. In experiment 1, drones treated with the juvenile hormone (JH) analog methoprene started flying at significantly younger ages than did control drones, as is the case for workers. In experiment 2, there was an age-related increase in JH associated with the onset of drone flight, as in workers. In experiment 3, drones derived from workers with fast rates of behavioral development themselves started flying at younger ages than drones derived from workers with slower rates of behavioral development. These results suggest that endocrine and genetic mechanisms associated with temporal polyethism did not evolve strictly within the context of worker social behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In optimal foraging theory, search time is a key variable defining the value of a prey type. But the sensory-perceptual processes that constrain the search for food have rarely been considered. Here we evaluate the flight behavior of bumblebees (Bombus terrestris) searching for artificial flowers of various sizes and colors. When flowers were large, search times correlated well with the color contrast of the targets with their green foliage-type background, as predicted by a model of color opponent coding using inputs from the bees' UV, blue, and green receptors. Targets that made poor color contrast with their backdrop, such as white, UV-reflecting ones, or red flowers, took longest to detect, even though brightness contrast with the background was pronounced. When searching for small targets, bees changed their strategy in several ways. They flew significantly slower and closer to the ground, so increasing the minimum detectable area subtended by an object on the ground. In addition, they used a different neuronal channel for flower detection. Instead of color contrast, they used only the green receptor signal for detection. We relate these findings to temporal and spatial limitations of different neuronal channels involved in stimulus detection and recognition. Thus, foraging speed may not be limited only by factors such as prey density, flight energetics, and scramble competition. Our results show that understanding the behavioral ecology of foraging can substantially gain from knowledge about mechanisms of visual information processing.